Up next

What is a Planet - More Grades K-3 Science on Harmony Square

1 Views· 09/09/24
kokkotv
kokkotv
Subscribers
0

A planet is an astronomical body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.

The term planet is ancient, with ties to history, astrology, science, mythology, and religion. Five planets in the Solar System are visible to the naked eye. These were regarded by many early cultures as divine, or as emissaries of deities. As scientific knowledge advanced, human perception of the planets changed, incorporating a number of disparate objects. In 2006, the International Astronomical Union (IAU) officially adopted a resolution defining planets within the Solar System. This definition is controversial because it excludes many objects of planetary mass based on where or what they orbit. Although eight of the planetary bodies discovered before 1950 remain "planets" under the current definition, some celestial bodies, such as Ceres, Pallas, Juno and Vesta (each an object in the solar asteroid belt), and Pluto (the first trans-Neptunian object discovered), that were once considered planets by the scientific community, are no longer viewed as planets under the current definition of planet.

Planets in astrology have a different definition.

The planets were thought by Ptolemy to orbit Earth in deferent and epicycle motions. Although the idea that the planets orbited the Sun had been suggested many times, it was not until the 17th century that this view was supported by evidence from the first telescopic astronomical observations, performed by Galileo Galilei. About the same time, by careful analysis of pre-telescopic observational data collected by Tycho Brahe, Johannes Kepler found the planets' orbits were elliptical rather than circular. As observational tools improved, astronomers saw that, like Earth, each of the planets rotated around an axis tilted with respect to its orbital pole, and some shared such features as ice caps and seasons. Since the dawn of the Space Age, close observation by space probes has found that Earth and the other planets share characteristics such as volcanism, hurricanes, tectonics, and even hydrology.

Planets are generally divided into two main types: large low-density giant planets, and smaller rocky terrestrials. There are eight planets in the Solar System. In order of increasing distance from the Sun, they are the four terrestrials, Mercury, Venus, Earth, and Mars, then the four giant planets, Jupiter, Saturn, Uranus, and Neptune. Six of the planets are orbited by one or more natural satellites.

Several thousands of planets around other stars ("extrasolar planets" or "exoplanets") have been discovered in the Milky Way. As of 1 November 2019, 4,126 known extrasolar planets in 3,067 planetary systems (including 671 multiple planetary systems), ranging in size from just above the size of the Moon to gas giants about twice as large as Jupiter have been discovered, out of which more than 100 planets are the same size as Earth, nine of which are at the same relative distance from their star as Earth from the Sun, i.e. in the circumstellar habitable zone. On December 20, 2011, the Kepler Space Telescope team reported the discovery of the first Earth-sized extrasolar planets, Kepler-20e[5] and Kepler-20f,[6] orbiting a Sun-like star, Kepler-20. A 2012 study, analyzing gravitational microlensing data, estimates an average of at least 1.6 bound planets for every star in the Milky Way. Around one in five Sun-like stars is thought to have an Earth-sized planet in its habitable zone.

There is no official definition of extrasolar planets. In 2003, the International Astronomical Union (IAU) Working Group on Extrasolar Planets issued a position statement, but this position statement was never proposed as an official IAU resolution and was never voted on by IAU members. The positions statement incorporates the following guidelines, mostly focused upon the boundary between planets and brown dwarfs:

Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 times the mass of Jupiter for objects with the same isotopic abundance as the Sun) that orbit stars or stellar remnants are "planets" (no matter how they formed). The minimum mass and size required for an extrasolar object to be considered a planet should be the same as that used in the Solar System.

Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are "brown dwarfs", no matter how they formed or where they are located.

Free-floating objects in young star clusters with masses below the limiting mass for thermonuclear fusion of deuterium are not "planets", but are "sub-brown dwarfs" (or whatever name is most appropriate).

MM9213

Show more

 0 Comments sort   Sort By


Up next